پاورپوینت شبکه های عصبی مصنوعی
لینک دانلود و خرید پایین توضیحات
دسته بندی : پاورپوینت
نوع فایل : .pptx ( قابل ويرايش و آماده پرينت )
تعداد اسلاید : 85 اسلاید
مقدمه
شبکه عصبی مصنوعی روشی عملی برای یادگیری توابع گوناگون نظیر توابع با مقادیر حقیقی، توابع با مقادیر گسسته و توابع با مقادیر برداری میباشد.
یادگیری شبکه عصبی در برابر خطاهای داده های آموزشی مصون بوده و اینگونه شبکه ها با موفقیت به مسائلی نظیر شناسائی گفتار، شناسائی و تعبیر تصاویر، و یادگیری روبات اعمال شده است.
شبکه عصبی چیست
روشی برای محاسبه است که بر پایه اتصال به هم پیوسته چندین واحد پردازشی ساخته میشود.
شبکه از تعداد دلخواهی سلول یا گره یا واحد یا نرون تشکیل میشود که مجموعه ورودی را به خروجی ربط میدهند.
شبکه عصبی چه قابلیتهائی دارد؟
محاسبه یک تابع معلوم
تقریب یک تابع ناشناخته
شناسائی الگو
پردازش سیگنال
یادگیری
مسائل مناسب برای یادگیری شبکه های عصبی
خطا در داده های آموزشی وجود داشته باشد.
مثل مسائلی که داده های آموزشی دارای نویز حاصل از دادهای سنسورها نظیر دوربین و میکروفن ها هستند.
مواردی که نمونه ها توسط مقادیر زیادی زوج ویژگی-مقدار نشان داده شده باشند. نظیر داده های حاصل از یک دوربین ویدئوئی.
تابع هدف دارای مقادیر پیوسته باشد.
زمان کافی برای یادگیری وجود داشته باشد. این روش در مقایسه با روشهای دیگر نظیر درخت تصمیم نیاز به زمان بیشتری برای یادگیری دارد.
نیازی به تعبیر تابع هدف نباشد. زیرا به سختی میتوان وزنهای یادگرفته شده توسط شبکه را تعبیر نمود.
الهام از طبیعت
مطالعه شبکه های عصبی مصنوعی تا حد زیادی ملهم از سیستم های یادگیر طبیعی است که در آنها یک مجموعه پیچیده از نرونهای به هم متصل در کار یادگیری دخیل هستند.
گمان میرود که مغز انسان از تعداد 10 11 نرون تشکیل شده باشد که هر نرون با تقریبا 104 نرون دیگر در ارتباط است.
سرعت سوئیچنگ نرونها در حدود 10-3 ثانیه است که در مقایسه با کامپیوترها 10 -10 ) ثانیه ( بسیار ناچیز مینماید. با این وجود آدمی قادر است در 0.1 ثانیه تصویر یک انسان را بازشناسائی نماید. این قدرت فوق العاده باید از پردازش موازی توزیع شده در تعدادی زیادی از نرونها حاصل شده باشد.
Perceptron
نوعی از شبکه عصبی برمبنای یک واحد محاسباتی به نام پرسپترون ساخته میشود. یک پرسپترون برداری از ورودیهای با مقادیر حقیقی را گرفته و یک ترکیب خطی از این ورودیها را محاسبه میکند. اگر حاصل از یک مقدار آستانه بیشتر بود خروجی پرسپترون برابر با 1 و در غیر اینصورت معادل -1 خواهد بود.
لینک دانلود و خرید پایین توضیحات
دسته بندی : پاورپوینت
نوع فایل : .pptx ( قابل ويرايش و آماده پرينت )
تعداد اسلاید : 85 اسلاید
مقدمه
شبکه عصبی مصنوعی روشی عملی برای یادگیری توابع گوناگون نظیر توابع با مقادیر حقیقی، توابع با مقادیر گسسته و توابع با مقادیر برداری میباشد.
یادگیری شبکه عصبی در برابر خطاهای داده های آموزشی مصون بوده و اینگونه شبکه ها با موفقیت به مسائلی نظیر شناسائی گفتار، شناسائی و تعبیر تصاویر، و یادگیری روبات اعمال شده است.
شبکه عصبی چیست
روشی برای محاسبه است که بر پایه اتصال به هم پیوسته چندین واحد پردازشی ساخته میشود.
شبکه از تعداد دلخواهی سلول یا گره یا واحد یا نرون تشکیل میشود که مجموعه ورودی را به خروجی ربط میدهند.
شبکه عصبی چه قابلیتهائی دارد؟
محاسبه یک تابع معلوم
تقریب یک تابع ناشناخته
شناسائی الگو
پردازش سیگنال
یادگیری
مسائل مناسب برای یادگیری شبکه های عصبی
خطا در داده های آموزشی وجود داشته باشد.
مثل مسائلی که داده های آموزشی دارای نویز حاصل از دادهای سنسورها نظیر دوربین و میکروفن ها هستند.
مواردی که نمونه ها توسط مقادیر زیادی زوج ویژگی-مقدار نشان داده شده باشند. نظیر داده های حاصل از یک دوربین ویدئوئی.
تابع هدف دارای مقادیر پیوسته باشد.
زمان کافی برای یادگیری وجود داشته باشد. این روش در مقایسه با روشهای دیگر نظیر درخت تصمیم نیاز به زمان بیشتری برای یادگیری دارد.
نیازی به تعبیر تابع هدف نباشد. زیرا به سختی میتوان وزنهای یادگرفته شده توسط شبکه را تعبیر نمود.
الهام از طبیعت
مطالعه شبکه های عصبی مصنوعی تا حد زیادی ملهم از سیستم های یادگیر طبیعی است که در آنها یک مجموعه پیچیده از نرونهای به هم متصل در کار یادگیری دخیل هستند.
گمان میرود که مغز انسان از تعداد 10 11 نرون تشکیل شده باشد که هر نرون با تقریبا 104 نرون دیگر در ارتباط است.
سرعت سوئیچنگ نرونها در حدود 10-3 ثانیه است که در مقایسه با کامپیوترها 10 -10 ) ثانیه ( بسیار ناچیز مینماید. با این وجود آدمی قادر است در 0.1 ثانیه تصویر یک انسان را بازشناسائی نماید. این قدرت فوق العاده باید از پردازش موازی توزیع شده در تعدادی زیادی از نرونها حاصل شده باشد.
Perceptron
نوعی از شبکه عصبی برمبنای یک واحد محاسباتی به نام پرسپترون ساخته میشود. یک پرسپترون برداری از ورودیهای با مقادیر حقیقی را گرفته و یک ترکیب خطی از این ورودیها را محاسبه میکند. اگر حاصل از یک مقدار آستانه بیشتر بود خروجی پرسپترون برابر با 1 و در غیر اینصورت معادل -1 خواهد بود.
فایل دانلودی حاوی فایل پاورپوینت است